
Fox Documentation
Release 1.0.0

Jeff Hui

December 06, 2014

Contents

1 Getting Started 3

2 Generators 5

3 The Runner 7
3.1 What is Fox? . 7
3.2 Installation . 8
3.3 Tutorial . 9
3.4 Generators . 16
3.5 Runner Overview . 21
3.6 Built-in Generators . 22

i

ii

Fox Documentation, Release 1.0.0

Everything about Fox, the property-based testing tool for Objective-C.

Besides this documentation, you can also view the source on GitHub.

Contents 1

https://github.com/jeffh/Fox

Fox Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting Started

New to Fox? Or just wanting to have a taste of it? Start here.

• Overview - What is Fox?

• Installation - How to get set up.

• Tutorial - Get a feel for using Fox.

3

Fox Documentation, Release 1.0.0

4 Chapter 1. Getting Started

CHAPTER 2

Generators

Generators are semi-random data producers that are the core to Fox’s capabilities. Follow the links below to learn
more in detail.

• Overview

• Built-in Generators Reference

• Building Custom Generators

• Writing Generators with Custom Shrinking

5

Fox Documentation, Release 1.0.0

6 Chapter 2. Generators

CHAPTER 3

The Runner

All the guts around configuring and executing Fox’s verification of properties.

• Overview

• Configuring Test Generation

• Random Number Generators

• Reporters

3.1 What is Fox?

Fox is a port of the property-based testing tool test.check.

Property-Based Testing Tools, especially ones inspired from QuickCheck, are test generators. These tools allow you
to describe a property of your program that should always hold true instead of writing hand-crafted test cases. A
pseudo-code example would be:

// pseudocode: A property for the sort() function
property := ForAll(xs where xs is an Array of Unsigned Integers){

// perform action
sorted_numbers := sort(xs)
// verify that sorted_numbers is in ascending order
i := 0
for n in sorted_numbers {

if i <= n {
i = n

} else {
return FAILURE

}
}
return SUCCESS

}

This example tests a sort function. Fox will generate tests based on the requirements of xs (any array of unsigned
integers) to find a failing example that causes a FAILURE.

In the mathematical sense, Fox is a weak proof checker of a property where the tool tries to assert the property is valid
by randomly generating data to find a counter-example.

7

https://github.com/clojure/test.check
https://www.haskell.org/haskellwiki/Introduction_to_QuickCheck2

Fox Documentation, Release 1.0.0

3.1.1 Shrinking Failures

The benefit of Fox over purely random data generation is Shrinking. An informed random generation is done by size.
This allows the tool to reduce the counter-example to a smaller data set without having a user manually separate thes
signal from the noise in the randomly generated data.

For example, if a sort() implementation failed with an exception when reading 9s. Fox could generate this value to
provoke the failure:

xs = @[@1, @5, @9, @3, @5] // fails

And then proceed to shrink xs by trying smaller permutations:

xs = @[@5, @9, @3, @5] // still fails
xs = @[@9, @3, @5] // fails
xs = @[@3, @5] // passed
xs = @[@9, @5] // fails
xs = @[@9] // fails

Fox does this automatically whenever a failure occurs. This is valuable instead of having to manually debug a failure
when random data generation is used.

Ready to get started? Install Fox.

3.2 Installation

Fox can be installed in multiple ways. If you don’t have a preference, install via git submodule.

Fox honors semantic versioning as humanly possible. If you’re unsure if a given update is backwards incompatible
with your usage. Check out the releases.

3.2.1 Manually (Git Submodule)

Add Fox as a submodule to your project:

$ git submodule add https://github.com/jeffh/Fox.git Externals/Fox

If you don’t want bleeding edge, check out the particular tag of the version:

$ cd Externals/Fox
$ git checkout v1.0.0

Add Fox.xcodeproj to your Xcode project (not Fox.xcworkspace). Then link Fox-iOS or Fox-OSX to your
test target.

Fox uses C++, so you’ll need to tell the linker of your test target (in Build Settings):

Other Linker Flags: -l”c++”

And you’re all set up! Dive right in by following the tutorial.

3.2.2 CocoaPods

Add to your Podfile for you test target to have the latest stable version of Fox:

8 Chapter 3. The Runner

https://github.com/jeffh/Fox/releases

Fox Documentation, Release 1.0.0

pod 'Fox', '~>1.0.0'

And then pod install.

And you’re all set up! Dive right in by following the tutorial.

3.2.3 Carthage

TODO

3.3 Tutorial

If you haven’t installed Fox yet, read up on Installation.

This tutorial will use the Objective-C API of Fox. There is a similar Swift API but that’s currently alpha and subject
to change.

3.3.1 Starting with an Example

Throughout this tutorial, we’ll cover the basics of writing property tests. To better understand property tests, let’s start
with some example-based ones first:

- (void)testSort {
NSArray *sortedNumbers = [MySorter sortNumbers:@[@5, @2, @1]];
XCTAssertEqualObjects(sortedNumbers, @[@1, @2, @5]);

}

This is a simple example test about sorting numbers. Let’s break down parts of this test and see how Fox rebuilds it
up:

- (void)testSort {
// inputs
NSArray *input = @[@5, @2, @1];
// behavior to test
NSArray *sortedNumbers = [MySorter sortNumbers:input];
// assertion
XCTAssertEqualObjects(sortedNumbers, @[@1, @2, @5]);

}

Fox takes these parts and separates them.

• Inputs are produced using generator. Generators describe the type of data to generate.

• Behavior to test remains the same.

• The assertion is based on logical statements of the subject and/or based on the generated inputs. The assertions
as usually describe properties of the subject under test.

Let’s see how we can convert them to Fox property tests.

3.3.2 Converting to a Property

To convert the sort test into the given property, we describe the intrinsic property of the code under test.

3.3. Tutorial 9

Fox Documentation, Release 1.0.0

For sorting, the resulting output should have the smallest elements in the start of the array and every element afterwards
should be greater than or equal to the element before it:

- (void)testSortBySmallestNumber {
id<FOXGenerator> arraysOfIntegers = FOXArray(FOXInteger());
FOXAssert(FOXForAll(arraysOfIntegers, ^BOOL(NSArray *integers) {

// subject under test
NSArray *sortedNumbers = [MySorter sortNumbers:integers];
// assertion
NSNumber *previousNumber = nil;
for (NSNumber *n in sortedNumbers) {

if (!previousNumber || [previousNumber integerValue] <= [n integerValue]) {
previousNumber = n;

} else {
return NO; // fail

}
}
return YES; // succeed

}));
}

Let’s break that down:

• FOXInteger is a generator that describes how to produce random integers (NSNumbers).

• FOXArray is a generator that describes how to generate arbitrary arrays. It takes another generator as an
argument. In this case, we’re giving it an integer generator to produce randomly sized array of random integers.

• FOXForAll defines a property that should always hold true. It takes two arguments, the generator to produce
and a block on how to assert against the given generated input.

• FOXAssert is how Fox asserts against properties. It will raise an exception if a property does not hold. They’re
part of Fox’s runner infrastructure.

The test can be read as:

Assert that for all array of integers named integer, sorting integers should produce
sortedNumbers. sortedNumbers is an array where the first number is the smallest and subsequent
elements are greater than or equal to the element that preceeds it.

3.3.3 Diagnosing Failures

The interesting feature of Fox occurs only when properties fail. Let’s write code that will fail the property we just
wrote:

+ (NSArray *)sortNumbers:(NSArray *)numbers {
NSMutableArray *sortedNumbers = [[numbers sortedArrayUsingSelector:@selector(compare:)] mutableCopy];
if (sortedNumbers.count >= 5) {

id tmp = sortedNumbers[0];
sortedNumbers[0] = sortedNumbers[1];
sortedNumbers[1] = tmp;

}
return sortedNumbers;

}

Some nefarious little code we added there! We run again we get to see Fox work:

Property failed with: (0, 0, 0, 0, "-1")
Location: // /Users/jeff/workspace/FoxExample/FoxExampleTests/FoxExampleTests.m:41

FOXForAll(arraysOfIntegers, ^BOOL(NSArray *integers) {

10 Chapter 3. The Runner

Fox Documentation, Release 1.0.0

NSArray *sortedNumbers = [self sortNumbers:integers];
NSNumber *previousNumber = ((void *)0);
for (NSNumber *n in sortedNumbers) {
if (!previousNumber || [previousNumber integerValue] <= [n integerValue]) {
previousNumber = n;
}
else {
return __objc_no;
}
}
return __objc_yes;
}

);

RESULT: FAILED
seed: 1417500369
maximum size: 200
number of tests before failing: 8
size that failed: 7
shrink depth: 8
shrink nodes walked: 52
value that failed: (

"-3",
"-3",
1,
"-2",
"-7",
"-5"

)
smallest failing value: (

0,
0,
0,
0,
"-1"

)

The first line describes the smallest failing example that failed. It’s placed there for convenience:

Property failed with: (0, 0, 0, 0, "-1")

The rest of the first half of the failure describes the location and property that failed.

The latter half of the failure describes specifics on how the smallest failing example was reached:

• seed is the random seed that was used to generate the series of tests to run.

• maximum size is the maximum size hint that Fox used when generating tests. This is useful for reproducing
test failures when pairs with the seed.

• number of tests before failing describes how many tests were generated before the failing test
was generated. Mostly for technical curiosity.

• size that failed describes the size that was used to generate the original failing test case. The size
dicates the general size of the data generated (eg - larger numbers and bigger arrays).

• shrink depth indicates how many “changes” performed to shrink the original failing test to produce the
smallest one. Mostly for technical curiosity.

• shrink nodes walked indicates how many variations Fox produced to find the smallest failing test.
Mostly for technical curiosity.

3.3. Tutorial 11

Fox Documentation, Release 1.0.0

• value that failed the original generated value that failed the property. This is before Fox performed any
shrinking.

• smallest failing value the smallest generated value that still fails the property. This is identical to the
value on the first line of this failure description.

So what happened? Fox generates random data until a failure occurs. Once a failure occurs, Fox starts the shrinking
process. The shrinking behavior is generator-dependent, but generally alters the data towards the “zero” value:

• For integers, that means moving towards 0 value.

• For arrays, each element shrinks as well as the number of elements moves towards zero.

Each time the value shrinks, Fox will verify it against the property to ensure the test still fails. This is a brute-force
process of elimination is an effective way to drop irrevelant noise that random data generation typically produces.

Notice that the last element has significance since it failed to shrink all the way to zero like the other elements. It’s
also worth noting that just because a value has been shrunk to zero doesn’t exclude it’s potential significance, but it is
usually less likely to be significant. In this case, the second to last element happens to be significant.

Warning: Due to the maximum size configuration. Fox limits the range of random integers generated. Fox’s
default maximum size is 200. Observe when you change the failure case to require more than 200 elements for the
sort example. See Configuring Test Generation for more information.

3.3.4 Testing Stateful APIs

Now this is all well and good for testing purely functional APIs - where the same input produces the same output.
What’s more interesting is testing stateful APIs.

Before we start, let’s talk about the conceptual model Fox uses to verify stateful APIs. We can model API calls as
data using Fox’s generator system.

As a simple case, let’s test a Queue. We can add and remove objects to it. Removing objects returns the first item in
the Queue:

• [queue add:1]

• [queue remove] // => returns 1

• [queue add:2]

• [queue add:3]

• [queue remove] // => returns 2

• [queue remove] // => returns 3

Just generating a series of API calls isn’t enough. Fox needs more information about the API:

• Which API calls are valid to make at any given point? This is specified in Fox as preconditions.

• What assertions should be after any API call? This is specified in Fox as postconditions.

This is done by describing a state machine. In basic terms, a state machine is two parts: state and transitions.

State indicates data that persists between transitions. Transitions describe how that state changes over time. Transitions
can have prerequisites before allowing them to be used.

For this example, we can model the API as a state machine: with transitions for each unique API call, and its state
representing what we think the queue should manage. In this case, we’ll naively choose an array of the queue’s
contents as the state.

12 Chapter 3. The Runner

http://en.wikipedia.org/wiki/Queue_(abstract_data_type)
http://en.wikipedia.org/wiki/Finite-state_machine

Fox Documentation, Release 1.0.0

From there, Fox can generate a sequence of state transitions that conform to the state machine. This allows Fox to
generate valid sequences of API calls.

We can translate the diagram into code by configuring a FOXFiniteStateMachine:

- (void)testQueueBehavior {
// define the state machine with its initial state.
FOXFiniteStateMachine *stateMachine = [[FOXFiniteStateMachine alloc] initWithInitialModelState:@[]];

// define the state transition for -[Queue addObject:]
// we'll only be using randomly generated integers as arguments.
// note that nextModelState should not mutate the original model state.
[stateMachine addTransition:[FOXTransition byCallingSelector:@selector(addObject:)

withGenerator:FOXInteger()
nextModelState:^id(id modelState, id generatedValue) {

return [modelState arrayByAddingObject:generatedValue];
}]];

// define the state machine for -[Queue removeObject]
FOXTransition *removeTransition = [FOXTransition byCallingSelector:@selector(removeObject)

nextModelState:^id(id modelState, id generatedValue) {
return [modelState subarrayWithRange:NSMakeRange(1, [modelState count] - 1)];

}];
removeTransition.precondition = ^BOOL(id modelState) {

return [modelState count] > 0;
};
removeTransition.postcondition = ^BOOL(id modelState, id previousModelState, id subject, id generatedValue, id returnedObject) {

// modelState is the state machine's state after following the transition
// previousModelState is the state machine's state before following the transition
// subject is the subject under test. You should not provoke any mutation changes here.
// generatedValue is the value that the removeTransition generated. We're not using this value here.
// returnedObject is the return value of calling [subject removeObject].
return [[previousModelState firstObject] isEqual:returnedObject];

};
[stateMachine addTransition:removeTransition];

// generate and execute an arbitrary sequence of API calls

3.3. Tutorial 13

Fox Documentation, Release 1.0.0

id<FOXGenerator> executedCommands = FOXExecuteCommands(stateMachine, ^id{
return [[Queue alloc] init];

});
// verify that all the executed commands properly conformed to the state machine.
FOXAssert(FOXForAll(executedCommands, ^BOOL(NSArray *commands) {

return FOXExecutedSuccessfully(commands);
}));

}

Note: If you prefer to not have inlined transition definitions, you can always choose to conform to
FOXStateTransition protocol instead of using FOXTransition.

We can now run this to verify the behavior of the queue. This does take significantly more time that the previous
example. But Fox’s execution time can be tweak if you want faster feedback versus a more thorough test run. See
Configuring Test Generation.

Just to be on the same page, here’s a naive implementation of the queue that passes the property we just wrote:

@interface Queue : NSObject
- (void)addObject:(id)object;
- (id)removeObject;
@end

@interface Queue ()
@property (nonatomic) NSMutableArray *items;
@end

@implementation Queue

- (instancetype)init {
self = [super init];
if (self) {

self.items = [NSMutableArray array];
}
return self;

}

- (void)addObject:(id)object {
[self.items addObject:object];

}

- (id)removeObject {
id object = self.items[0];
[self.items removeObjectAtIndex:0];
return object;

}

@end

Note: Testing a queue with this technique has obvious testing problems (being the test is like the implementation).
But for larger integration tests, this can be useful. They just happen to be less to be concise examples.

To break this, let’s modify the queue implementation:

- (void)addObject:(id)object {
if (![object isEqual:@4]) {

[self.items addObject:object];

14 Chapter 3. The Runner

Fox Documentation, Release 1.0.0

}
}

Running the tests again, Fox shows us a similar failure like sort:

Property failed with: @[[subject addObject:4] -> (null), [subject removeObject] -> (null) (Postcondition FAILED) Exception Raised: *** -[__NSArrayM objectAtIndex:]: index 0 beyond bounds for empty array Model before: (4) Model after: (),]
Location: // /Users/jeff/workspace/FoxExample/FoxExampleTests/FoxExampleTests.m:68
FOXForAll(executedCommands, ^BOOL(NSArray *commands) {
return FOXExecutedSuccessfully(commands);
}
);

RESULT: FAILED
seed: 1417510193
maximum size: 200
number of tests before failing: 13
size that failed: 12
shrink depth: 10
shrink nodes walked: 16
value that failed: @[
[subject addObject:-1] -> (null),
[subject addObject:-8] -> (null),
[subject addObject:4] -> (null),
[subject addObject:12] -> (null),
[subject removeObject] -> -1,
[subject addObject:4] -> (null),
[subject addObject:10] -> (null),
[subject removeObject] -> -8,
[subject removeObject] -> 12 (Postcondition FAILED)

Model before: (
4,
12,
4,
10

)
Model after: (
12,
4,
10

),
]
smallest failing value: @[
[subject addObject:4] -> (null),
[subject removeObject] -> (null) (Postcondition FAILED)

Exception Raised: *** -[__NSArrayM objectAtIndex:]: index 0 beyond bounds for empty array
Model before: (
4

)
Model after: (

),
]

Here we can see the original generated test that provoked the failure:

• [subject addObject:-1]

• [subject addObject:-8]

• [subject addObject:4]

3.3. Tutorial 15

Fox Documentation, Release 1.0.0

• [subject addObject:12]

• [subject removeObject] -> -1

• [subject addObject:4]

• [subject addObject:10]

• [subject removeObject] -> -8

• [subject removeObject] -> 12 (Postcondition FAILED)

That’s not as nice to debug as the test after shrinking:

• [subject addObject:4]

• [subject removeObject] -> (null) (Postcondition FAILED) - out of bounds exception
raised.

You may be wondering why the removeObject call is still required. This is the only way assertions are made
against the queue. Just calling addObject: doesn’t reveal any issues with an implementation.

And that’s most of the power of Fox. You’re ready to start writing property tests!

If you want read on, read more about the core of Fox’s design: Generators.

3.4 Generators

Generators specify directed random data creation. This means generators know how to create the given data and how
to shrink it.

Technically, all generators conform to the FOXGenerator protocol. All generators return a lazy rose tree for con-
sumption by the Fox runner.

The power of generators are their composability. Shrinking is provided for free if you compose with Fox’s built-in
generators. In fact, most of Fox’s built-in generators are composed on top of FOXChoose. Of course you can provide
custom shrinking strategies as needed.

For the typed programming enthusiast, generators are functions expected to conform to this type:

(id<FOXRandom>, uint32_t) -> FOXRoseTree<U> where U is an Objective-C object.

There are few special cases to this rule. For example, FOXAssert expects
FOXRoseTree<FOXPropertyResult> which FORForAll produces.

Note: For Haskell programmers, Fox is a decendant to Haskell’s QuickCheck 2. Generators are a monadic type
which combine generation and shrinking.

For the list of all generators that Fox provides, read about Built-in Generators.

3.4.1 Building Custom Generators

It’s easy to compose the built-in generators to build generators for custom data types we have. Let’s say we want to
generate random permutations of a Person class:

// value object. Implementation assumed
@interface Person : NSObject
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@end

16 Chapter 3. The Runner

Fox Documentation, Release 1.0.0

We can represent this Person data using by generating an array of values or dictionary of values. Here’s how it looks
using a dictionary in an property assertion:

id<FOXGenerator> dictionaryGenerator = FOXDictionary(@{
@"firstName": FOXAlphabeticalString(),
@"lastName": FOXAlphabeticalString()

});
FOXAssert(FOXForAll(dictionaryGenerator, ^BOOL(NSDictionary *data) {

Person *person = [[Person alloc] init];
person.firstName = data[@"firstName"];
person.lastName = data[@"lastName"];
// assert with person

}));

But we want this to be reusable. Using FOXMap, we can create a new generator that is based on the
dictionaryGenerator:

// A new generator that creates random person
id<FOXGenerator> AnyPerson(void) {

id<FOXGenerator> dictionaryGenerator = FOXDictionary(@{
@"firstName": FOXAlphabeticalString(),
@"lastName": FOXAlphabeticalString()

});
return FOXMap(dictionaryGenerator, ^id(NSDictionary *data) {

Person *p = [[Person alloc] init];
p.firstName = data[@"firstName"];
p.lastName = data[@"lastName"];
return p;

});
}

And we can then use is like any other generator:

FOXAssert(FOXForAll(AnyPerson(), ^BOOL(Person *person) {
// assert with person

}));

You can see the reference for all the generators. Most common generators can be built from the provided mappers.

3.4.2 How Shrinking Works

Generators are just functions that accept a random number generator and a size hint as arguments and then return a
rose tree of values.

Rose trees sound fancy, but they’re generic trees with an arbitrary number of branches. Each node in the tree represents
a value. Fox generators create rose trees instead of individual values. This allows the runner to shrink the value by
traversing through the children of the tree.

The main shrinking implementation Fox uses are for integers (via FOXChoose). For example, if a 4 was generated,
the rose tree that FOXChoose generates would look like this:

3.4. Generators 17

Fox Documentation, Release 1.0.0

The children of each node represents a smaller value that its parent. Fox will walk depth-first through this tree when a
test fails to shrink to the smallest value.

Based on the diagram, the algorithm for shrinking integers prefers:

• Reducing to zero immediately

• Reducing to 50% of the original value

• Reducing the value by 1

This makes it more expensive to find larger integers (because of the redundant checking of zero), but it is generally
more common to immediately shrink to the smallest value.

3.4.3 Writing Generators with Custom Shrinking

Warning: This is significantly more complicated than composing generators, which is probably what you
want the majority of the time. Composing existing generators will also provide shrinking for free.

Warning: This section assumes knowledge functional programming concepts. It’s worth reading up on function
composition, map/reduce, recursion, and lazy computation.

It is worth reading up on How Shrinking Works before proceeding.

Let’s write a custom integer generator that shrinks to 10 instead of zero. We won’t be using anything built on top of
FOXChoose for demonstrative purposes, but we will be using Fox’s Debugging Functions.

18 Chapter 3. The Runner

Fox Documentation, Release 1.0.0

Step one, we can easily always generate 10 by returning a child-less rose tree:

id<FOXGenerator> MyInteger(void) {
FOXGenerate(^FOXRoseTree *(id<FOXRandom> random, NSUInteger size) {

return [[FOXRoseTree alloc] initWithValue:@10];
});

}

FOXGenerate is an easy way to create a generator without having to create an object that conforms to
FOXGenerator. The block is the method body of the one method that the protocol requires.

This is, in fact, what FOXReturn does. However, we don’t get any randomness:

// FOXSample generates 10 random values using the given generator.
FOXSample(MyInteger()); // => @[@3];

So let’s use the random number generator provided. We’ll also use the size to dictate the size we want:

id<FOXGenerator> MyInteger(void) {
FOXGenerate(^FOXRoseTree *(id<FOXRandom> random, NSUInteger size) {

NSInteger lower = -((NSInteger)size);
NSInteger upper = (NSInteger)size;
NSInteger randomInteger = [random randomIntegerWithinMinimum:lower

andMaximum:upper];
return [[FOXRoseTree alloc] initWithValue:@(randomInteger)];

});
}

We now generate random integers! But we still don’t have any shrinking:

// Random integers
FOXSample(MyInteger());
// => @[@-30, @103, @188, @-184, @-22, @-118, @147, @-186, @-128, @-68]

// FOXSampleShrinking takes the first 10 values of the rose tree.
// The first value is the generated value. Subsequent values are
// shrinking values from the first one.
FOXSampleShrinking(MyInteger()) // => @[@-8]; there's no shrinking

Let’s add a simple shrinking mechanism, we can populate the children of the rose tree we return:

id<FOXGenerator> MyInteger(void) {
FOXGenerate(^FOXRoseTree *(id<FOXRandom> random, NSUInteger size) {

NSInteger lower = -((NSInteger)size);
NSInteger upper = (NSInteger)size;
NSInteger randomInteger = [random randomIntegerWithinMinimum:lower

andMaximum:upper];
id<FOXSequence> children = [FOXSequence sequenceFromArray:@[[[FOXRoseTree alloc] initWithValue:@10]]];
return [[FOXRoseTree alloc] initWithValue:@(randomInteger)

children:children];
});

}
// Shrinking once
FOXSampleShrinking(MyInteger()) // => @[@-8, @10];

Of course, we don’t properly handle shrinking for all variations. FOXSequence is a port of Clojure’s sequence
abstraction. They provide opt-in laziness for Fox’s rose tree.

We’ll mimic the behavior of Fox’s integer shrinking algorithm:

• Shrink to 10.

3.4. Generators 19

http://clojure.org/sequences
http://clojure.org/sequences

Fox Documentation, Release 1.0.0

• Shrink towards 10 by 50% of its current value.

• Shrink towards 10 by 1.

We’ll do this by defining functions to recursively create our rose tree:

// sequenceOfHalfIntegers(@14) -> SEQ(@14, @12, @11)
static id<FOXSequence> sequenceOfHalfIntegers(NSNumber *n) {

if ([n isEqual:@10]) {
return nil;

}
NSNumber *halfN = @(([n integerValue] - 10) / 2 + 10);
return [FOXSequence sequenceWithObject:n

remainingSequence:sequenceOfHalfIntegers(halfN)];
}

sequenceOfHalfIntegers creates a sequence of integers that are half increments from n to 10 starting with n.
nil is equivalent to an empty sequence. Next we define the children values:

// eg - sequenceOfSmallerIntegers(@14) -> SEQ(@10, @12, @13)
static id<FOXSequence> sequenceOfSmallerIntegers(NSNumber *n) {

if ([n isEqual:@10]) {
return nil;

}
return [sequenceOfHalfIntegers(n) sequenceByMapping:^id(NSNumber *m) {

return @([n integerValue] - ([m integerValue] - 10));
}];

}

sequenceOfSmallerIntegers creates a lazy sequence of values between n and 10 (including 10). Each element
is (n - each half number difference to 10). Finally, we need to convert this sequence into a rose
tree:

static FOXRoseTree *roseTreeWithInteger(NSNumber *n) {
id<FOXSequence> smallerIntegers = sequenceOfSmallerIntegers(n);
id<FOXSequence> children = [smallerIntegers sequenceByMapping:^id(NSNumber *smallerInteger) {

return roseTreeWithInteger(smallerInteger);
}];
return [[FOXRoseTree alloc] initWithValue:n children:children];

}

sequenceOfSmallerIntegers creates a rose tree for a given number. The children are val-
ues from sequenceOfSmallerIntegers(n). The rose tree is recursively generated until
sequenceOfSmallerIntegers returns an empty sequence (when the number is 10).

Finally, we wire everything together in our function that defines our generator:

id<FOXGenerator> MyInteger(void) {
FOXGenerate(^FOXRoseTree *(id<FOXRandom> random, NSUInteger size) {

NSInteger lower = -((NSInteger)size);
NSInteger upper = (NSInteger)size;
NSInteger randomInteger = [random randomIntegerWithinMinimum:lower

andMaximum:upper];
return roseTreeWithInteger(@(randomInteger));

});
}

Conceptually, our data pipeline looks like this:

20 Chapter 3. The Runner

Fox Documentation, Release 1.0.0

Now we can generate values that shrink to 10! Obviously, this can be applied to more interesting shrinking strategies.

3.5 Runner Overview

The runner is how Fox executes properties, seeds data generation, and performs shrinking. Although you can create
and use the runner directly via FOXRunner, it is more common to use wrappers – such as FOXAssert.

FOXAssert takes a property assertion (only FOXForAll for now) to assert against. An exception is raised when
the property fails to hold.

A more flexible FOXAssertWithOptions can be used to provide parameters that is normally accepted by the
runner.

3.5.1 Configuring Test Generation

The primary operation of Fox’s runner is to create and executed tests. There are three primary parameters to configure
Fox’s test generation:

• The seed allows you to seed the random number generator. This allows you to set the PRNG to help reproduce
failures that Fox may have generated during a test run. Setting this to the default (0) will make Fox generate a
seed based on the current time.

• The number of tests indicates the number of tests Fox will generate for this particular property. More tests
generated will more thoroughly cover the property at the cost of time. Setting this to the default (0) will make
Fox run 500 tests.

• The maximum size indicates the maximum size factor Fox will use when generating tests. Generators use this
size factor as a hint to produce data of the appropriate sizes. For example, FOXInteger will generate integers
within the range of 0 to maximumSize and FOXArray will generate arrays whose number of elements are
in the range of 0 to maximumSize. Setting this to the default (0) will make Fox run with a maximumSize
of 200. If you know this property’s data generation can tolerate larger sizes, feel free to increase this. Large
collection generation can be prohibitively expensive.

Please note that seed, number of tests, and maximum size should all be recorded to reproduce a failure that Fox may
have generated.

3.5. Runner Overview 21

Fox Documentation, Release 1.0.0

3.5.2 Per Assertion Configuration

By default, Fox will generate 500 tests per assertion with a maximum size of 200 and a random seed. By changing
FOXAssert to FOXAssertWithOptions we can provide optional configuration by using the FOXOptions:

FOXAssertWithOptions(FOXForAll(...), (FOXOptions){
seed=5, // default: time(NULL)
numberOfTests=1000, // default: 500
maximumSize=100, // default: 200

});

3.5.3 Global Configuration

Values can be overridden using environment variables to globally change the defaults.

• Setting FOX_SEED can specify a specific seed to run for all properties.

• Setting FOX_NUM_TESTS sets the number of tests to generate for each property.

• Setting FOX_MAX_SIZE sets the maximum size factor Fox will use to when generating tests.

3.5.4 Random Number Generators

Random number generation controls how random number generation works in Fox. This is what generators receive as
their first argument.

The runner uses FOXDeterministicRandom which uses C++ random by default. This keeps randomization state
isolate from any other potential system that uses a global PRNG. But you can implement the FOXRandom protocol to
support custom random schemes.

Another implementation Fox provides out of the box is FOXConstantRandom, which always generates a constant
number. This can be useful for testing generators by example.

3.5.5 Reporters

The runner also provides a way to observe its operation via a reporter. Reporters are simply a the delegate to the
runner. Reporters are invoked synchronously, so be careful about its performance impact on execution.

These delegates cannot influence the execution of the runner, but can provide useful user-facing output about the
progress of Fox’s execution.

By default, Fox runners do not have a reporter assigned to it. But Fox does provide a couple reporters:

• FOXStandardReporter reports in a rspec-like dot reporter.

• FOXDebugReporter reports more information about the execution.

3.6 Built-in Generators

Here are the list of built-in generators that Fox provides. They are either generators of a particular data type or provide
computation on top of other generators.

22 Chapter 3. The Runner

http://nshipster.com/launch-arguments-and-environment-variables/
http://www.cplusplus.com/reference/random/
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html

Fox Documentation, Release 1.0.0

3.6.1 Data Generators

There are many data generators provided for generating data. Most of these generators shrink to zero:

• Numerically zero (or as close as possible)

• Empty collection (or at least shrunk items)

Function Generates Description
FOXInteger NSNumber * Generates random integers
FOXPositiveInteger NSNumber * Generates random zero or positive integers
FOXNegativeInteger NSNumber * Generates random zero or negative integers
FOXStrictPositiveInteger NSNumber * Generates random positive integers (non-zero)
FOXStrictNegativeInteger NSNumber * Generates random negative integers (non-zero)
FOXChoose NSNumber * Generates random integers between the given range (inclusive)
FOXFloat NSNumber * Generates random floats. WARNING: currently does not stably shrink to 0.
FOXDouble NSNumber * Generates random doubles. WARNING: currently does not stably shrink to 0.
FOXDecimalNumber NSNumber * Generates random decimal numbers. WARNING: currently does not stably shrink to 0.
FOXReturn id Always returns the given value. Does not shrink
FOXTuple NSArray * Generates random fixed-sized arrays of generated values. Values generated are in the same order as the generators provided.
FOXTupleOfGenerators NSArray * Generates random fixed-sized arrays of generated values. Values generated are in the same order as the generators provided.
FOXArray NSArray * Generates random variable-sized arrays of generated values.
FOXArrayOfSize NSArray * Generates random fixed-sized arrays of generated values. Values generated are in the same order as the generators provided.
FOXArrayOfSizeRange NSArray * Generates random variable-sized arrays of generated values. Array size is within the given range (inclusive).
FOXDictionary NSDictionary * Generates random dictionries of generated values. Keys are known values ahead of time. Specified in @{<key>: <generator>} form.
FOXSet NSSet * Generates random sets of a given generated values.
FOXCharacter NSString * Generates random 1-length sized character string. May be an unprintable character.
FOXAlphabetCharacter NSString * Generates random 1-length sized character string. Only generates alphabetical letters.
FOXNumericCharacter NSString * Generates random 1-length sized character string. Only generates digits.
FOXAlphanumericCharacter NSString * Generates random 1-length sized character string. Only generates alphanumeric.
FOXAsciiCharacter NSString * Generates random 1-length sized character string. Only generates ascii characters.
FOXString NSString * Generates random variable length strings. May be an unprintable string.
FOXStringOfLength NSString * Generates random fixed length strings. May be an unprintable string.
FOXStringOfLengthRange NSString * Generates random length strings within the given range (inclusive). May be an unprintable string.
FOXAsciiString NSString * Generates random variable length strings. Only generates ascii characters.
FOXAsciiStringOfLength NSString * Generates random fixed length strings. Only generates ascii characters.
FOXAsciiStringOfLengthRange NSString * Generates random variable length strings within the given range (inclusive). Only generates ascii characters.
FOXAlphabeticalString NSString * Generates random variable length strings. Only generates alphabetical characters.
FOXAlphabeticalStringOfLength NSString * Generates random fixed length strings. Only generates alphabetical characters.
FOXAlphabeticalStringOfLengthRange NSString * Generates random variable length strings within the given range (inclusive). Only generates alphabetical characters.
FOXAlphanumericalString NSString * Generates random variable length strings. Only generates alphabetical characters.
FOXAlphanumericalStringOfLength NSString * Generates random fixed length strings. Only generates alphanumeric characters.
FOXAlphanumericalStringOfLengthRange NSString * Generates random variable length strings within the given range (inclusive). Only generates alphanumeric characters.
FOXNumericalString NSString * Generates random variable length strings. Only generates numeric characters.
FOXNumericalStringOfLength NSString * Generates random fixed length strings. Only generates numeric characters.
FOXNumericalStringOfLengthRange NSString * Generates random variable length strings within the given range (inclusive). Only generates numeric characters.
FOXSimpleType id Generates random simple types. A simple type does not compose with other types. May not be printable.
FOXPrintableSimpleType id Generates random simple types. A simple type does not compose with other types. Ensured to be printable.
FOXCompositeType id Generates random composite types. A composite type composes with the given generator.
FOXAnyObject id Generates random simple or composite types.
FOXAnyPrintableObject id Generates random printable simple or composite types.

3.6. Built-in Generators 23

Fox Documentation, Release 1.0.0

3.6.2 Computation Generators

Also, you can compose some computation work on top of data generators. The resulting generator adopts the same
shrinking properties as the original generator.

Function Description
FOXMap Applies a block to each generated value.
FOXBind Applies a block to the lazy tree that the original generator creates. See Building Generators

section for more information.
FOXResize Overrides the given generator’s size parameter with the specified size. Prevents shrinking.
FOXOptional Creates a new generator that has a 25% chance of returning nil instead of the provided

generated value.
FOXFrequency Dispatches to one of many generators by probability. Takes an array of tuples (2-sized array) -

@[@[@probability_uint, generator]]. Shrinking follows whatever generator is returned.
FOXSized Encloses the given block to create generator that is dependent on the size hint generators

receive when generating values.
FOXSuchThat Returns each generated value iff it satisfies the given block. If the filter excludes more than 10

values in a row, the resulting generator assumes it has reached maximum shrinking.
FOX-
SuchThatWith-
MaxTries

Returns each generated value iff it satisfies the given block. If the filter excludes more than the
given max tries in a row, the resulting generator assumes it has reached maximum shrinking.

FOXOneOf Returns generated values by randomly picking from an array of generators. Shrinking is
dependent on the generator chosen.

FOXForAll Asserts using the block and a generator and produces test assertion results
(FOXPropertyResult). Shrinking tests against smaller values of the given generator.

FOXForSome Like FOXForAll, but allows the assertion block to “skip” potentially invalid test cases.
FOXCommands Generates arrays of FOXCommands that satisfies a given state machine.
FOXExe-
cuteCommands

Generates arrays of FOXExecutedCommands that satisfies a given state machine and executed
against a subject. Can be passed to FOXExecutedSuccessfully to verify if the subject conforms
to the state machine.

Warning: Using FOXSuchThat and FOXSuchThatWithMaxTries are “filter” generators and can lead to
significant waste in test generation by Fox. While it gives you the most flexibility the kind of generated data, it is
the most computationally expensive. Use other generators when possible.

3.6.3 Debugging Functions

Fox comes with a handful of functions that can help you diagnose generator problems.

Function Description
FOXSample Samples 10 values that generator produces.
FOXSampleWithCount Samples a number of values that a generator produces.
FOXSampleShrinking Samples 10 steps of shrinking from a value that a generator produces.
FOXSampleShrinkingWith-
Count

Samples a number of steps of shrinking from a value that a generator
produces.

24 Chapter 3. The Runner

	Getting Started
	Generators
	The Runner
	What is Fox?
	Installation
	Tutorial
	Generators
	Runner Overview
	Built-in Generators

